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Abstract

In this paper we show several results obtained by
combining the use of stable distributions with pseu-
dorandom generators for bounded space. In partic-
ular:

e we show how to maintain (using only
O(logn/e?) words of storage) a sketch
C(p) of a point p € I? under dynamic updates
of its coordinates, such that given sketches
C(p) and C(q) one can estimate |p — q|1 up to
a factor of (1 + €) with large probability. This
solves the main open problem of [10].

e we obtain another sketch function C' which
maps 7 into a normed space [1* (as opposed
to C'), such that m = m(n) is much smaller
than n; to our knowledge this is the first di-
mensionality reduction lemma for Iy norm

o we give an explicit embedding of I3 into l?o(log "

with distortion (1 + 1/n®W) and a non-
constructive embedding of I3 into l?(n) with dis-
tortion (1 4 €) such that the embedding can be
represented using only O(nlog?n) bits (as op-
posed to at least n? used by earlier methods)

1 Introduction

Stable distributions [26] are defined as limits
of normalized sums of independent identically dis-
tributed variables (see also Preliminaries for an al-
ternative definition). The most well-known exam-
ple of a stable distribution is Gaussian (or normal)
distribution. However, the class is much wider; for
example, 1t includes heavy-tailed distributions. Sta-
ble distribution have found numerous applications
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in various fields (see the survey [24] for more de-
tails).

In this paper we show that the combination of
stable distributions and bounded space pseudoran-
dom generators [23] forms a powerful tool for prov-
ing a variety of embedding-like results. The basic
idea behind this combination is as follows. It is
known [11, 25, 20] that an inner product of a vector
u € l;l with a sequence of n 1.i.d. random vari-
ables having stable distribution (with parameter p,
see Preliminaries) is a good estimator of [, norm
of u; in particular, one can use several such prod-
ucts to embed [, into some other space. Since inner
product can be computed in a small space, we can
use pseudorandom generators to reduce the num-
ber of required random bits. This in turn translates
into reduction of storage/dimensionality /number of
non-uniform bits or other parameters of interest, de-
pending on the application.

In the following we describe in more detail ap-

plications of this technique to computing with data
streams, dimensionality reduction in /; and embed-
dings of l; into {1; we also describe the relevant al-
gorithmic implications.
Stream computation. The first problem we ad-
dress is defined as follows [10] (see also [14] for a
background on stream computation). Assume that
we have an access to a stream S of data, where
each chunk of data is of the form (¢,a), where
i€ ={0..n—1}and a € {-M ... M}. We
want to approximate (up to the multiplicative fac-
tor (1 £ €)) the quantity L;(S), where

Lp(S) = (31 > al)te.

i€[n] (i,a)€S

The problem has a variety applications to estimat-
ing the size of self-join [1, 13] and potential ap-
plications to estimation of statistics of Net-Flow
data [10]. An obvious solution to this problem is
to maintain a counter ¢; for each ¢ and compute
the sum of |¢;]’s at the end. Unfortunately, this
solution requires ©(n) words of storage. In their
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influential paper, Alon, Matias and Szegedy [1] pro-
posed a very nice and simple scheme for approximat-
ing L2(S)! in space O(1/¢?) with (arbitrarily large)
constant probability. Feigenbaum, Kannan, Strauss
and Viswanathan [10] proposed an algorithm (using
similar amount of memory) for L1 (S) for the case
where (roughly) for each ¢ the stream S contains at
most two pairs (¢,a). An alternative way to view
their result is to assume two streams, one (S, ) con-
taining red pairs and another one (S;) containing
blue pairs; for each i there is at most one pair (¢, a)
of each color. The goal is to compute sketches C(S,)
and C'(Sp) of small size, such that the approximate
value L1 (S, 55) = 32| Z(i,a)esr @ — Z(i,a)eSb al
can be quickly evaluated from C(S,) and C(S) by
applying some function I (see [10] for more de-
tails of the model). Computing sketches of normed
vectors enables to compress the data and speed-
up computation, e.g., see [18] where this was ap-
proach was shown to give up to an order of magni-
tude speed-up for various data-mining problems; see
also [4, 3, 6] (where a somewhat different similarity
measure has been used).

In this paper we propose a unified framework

for approximating L,(S) for p € {1,2}? using
O(logn/e?) memory words. Our algorithm does not
have the aforementioned restrictions of [10]; thus,
it solves the main open problem from that paper
(see [10], comments after Corollary 16). Moreover,
our algorithm maintains only linear combinations
of the input values, and therefore extends also to
the sketch model (again, without the restrictions
of [10]). Since the algorithm is simple and free of
large constants, it can be used to extend the meth-
ods of [18] to {1 norm and it is also likely to find
practical uses for the compression applications men-
tioned in [10].
Dimensionality reduction. The above stream al-
gorithms, especially those operating in the sketch
model, can be viewed as dimensionality reduction
techniques. Indeed, the streams S, and S, can
be viewed as points in n-dimensional space and
L,(Sr,S) is just a norm (for p > 1). Thus the
sketch operator C' can be viewed as an approximate
embedding of [} into the sketch space (say C), such
that

e each point from C can be described using only
small number (say m) of numbers (so we can
assume C C ™).

n their original paper they assumed all pairs are of the
form (¢, +1), but it was shown in [10] that their algorithm
actually works for the general case.

2We also discuss the extension to any p € (0,2].

o the value of L,(S,,S;) is approximately equal
to F(C'(Sr), C(Sh))

However, all of the above algorithms have the unfor-
tunate property that the pair (C, F) is not a normed
space. Specifically, the definition of F' involves the
median operator?; e.g. for L,

F((l‘l, N

&), (Y1y -+ Ym)) = median(|z1—y1 |, . ..

Since F'is not a norm, none of the large number
of algorithms designed for normed spaces can be
used. Thus, if one would like to perform any non-
trivial operation on the set of points in the sketch
space (e.g. clustering, similarity search, regression
etc), not being able to apply algorithms designed
for normed spaces is a serious disadvantage.

In this paper we attempt to overcome this dif-
ficulty. For Lo, one can observe that we can re-
place median by sum in our algorithm without sig-
nificantly increasing the probability of error (this
follows from the proof of Johnson-Lindenstrauss
dimensionality reduction lemma as in [16]). For
L1, the situation 1s more complicated, since for
sketch points (z1,...,2m), (¥1,...,Ym) the expec-
tation E[|z; — y;|] is undefined (i.e. is equal to
o). However, we were able to show that there
exists a sketch function C which maps the points
into m = (In(1/8)/¢)°/9)-dimensional space with
l1 norm, such that for any pair of points p, ¢:

o |C(p)—C(g)]1 > (1—¢€)|[p—q|1 with probability
at least 1 — ¢ (i.e. C' is almost non-contractive
with high probability)

¢ [C(p) = C(@)ls < (L+€)lp— gls with probabil-
ity at least 1 — 1/(1 4+ ¢€) (i.e. is almost non-
expansive with a constant probability)

Note, that this can be viewed as a one-sided ana-
log of Johnson-Lindenstrauss dimensionality reduc-
tion for [; ( to our knowledge this is the first di-
mensionality reduction theorem for ;). Although
we cannot ensure that the mapping does not ez-
pand a fixed pair of points with high probability,
the one-sided guarantee is good enough for several
purposes. In particular, consider searching for the
nearest neighbor (say of point ¢): if the distance
from ¢ to its nearest neighbor p does not expand
much, and the distance to any other point p’ does
not contract much, we are still guaranteed to return

3For Ly the algorithmsin [1, 10] can be implemented with
median replaced by a sum; unfortunately, in that case the
sketch size depends polynomially, not logarithmically on the
probability of error. This makes the modified algorithm un-
suitable for the applications mentioned below.

) |xm_ym|)
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an approximate nearest neighbor of ¢ (note that we
can ensure this happens with constant probability,
which can be amplified by using multiple data struc-
tures). By reductions in [8, 9, 16, 17, 5, 12] solving
approximate nearest neighbor gives us efficient algo-
rithms for hierarchical clustering, Minimum Span-
ning Tree clustering, diameter and other forms of
clustering. Thus our dimensionality reduction tech-
nique is sufficient for a large class of algorithmic
problems.

Deterministic embeddings of [, into [;. It is
known (e.g. see [11] and references therein) that {3
can be embedded into l?(n) with distortion (1 + €)
(the O() constant depends on the €). Unfortunately,
none of those proofs 1s constructive. To our knowl-
edge, the only constructive result of this type [2, 21]

2
embeds [ into l?(n ) with /3 distortion. In this
paper we provide:

O (log n)

with

e an explicit embedding of [ into I}
distortion (1 + 1/n®(1))

e a non-constructive embedding of 15 into l?(n)
with distortion (1 + €) such that the embed-
ding can be represented using only O(n log® n)
bits (as opposed to at least n? used by earlier
methods); this reduces the non-uniformity and
space requirements of the embedding

By combining the first result with the result
of [15] we obtain a (3 4 ¢)-approximate deter-
ministic algorithm for the nearest neighbor search
in {2 with polynomial preprocessing/storage and
O(nlOg”) query time. Note that for not-so-large di-
mension n (e.g. polylogarithmicin the data set size)
this gives a sublinear query time.

2 Preliminaries

Stable distributions. A distribution D over It
is called p-stable, if there exists p > 0 such that
for any n real numbers ai ...a, and 1.i.d. variables
Xy ... X, variables with distribution D, the random
variable ZZ a; X; has the same distribution as the
variable (3, |a;[P)*/? X, where X is a random vari-
able with distribution D.

Tt is known [26] that stable distributions exist for
any p € (0,2]. In particular:

e a Cauchy distribution D¢, defined by the den-
sity function e(z) = %14}7, is 1-stable
e a Gaussian (normal) distribution D¢, defined

by the density function g(z) = \/%e—ﬁ/?’ is

2-stable

Pseudorandom generators (PRGs). As in [23]
we consider PRGs which fool any Finite State Ma-
chine (FSM) which uses at most O(S) bits of space
(or 2005) states). Assume that a FSM Q € space(S)
uses at most £ chunks of random bits, where each
chunk is of length 6. The generator G : {0,1}"™ —
({0, 1}%)* expands a “small number” m of “truly
random” bits into kb bits which “look random” for
Q. Formally, it is defined as follows. Let D! be a
uniform distribution over {0, 1}. For any (discrete)
random variable X let D[X] be the distribution of
X, interpreted as a vector of probabilities. Let Q(x)
denote the state of @) after using the random bits
sequence x. Then we say that G is a PRG with pa-
rameter € > 0 for a class C of FSMs, if for every

QecC
[D[Quepes ()] = PlQuenm (G(w))]l <€

where |y|1 denotes an {1 norm of a vector y.

Fact 1 ([23]) There exists a PRG G for space(S)
with parameter ¢ = 2=°5) such that:

o G expands O(Slog R) bits into O(R) bits

o G requires only O(S) bits of storage (in addi-
tion to its random input)

o any length-O(S) chunk of G(x) can be com-
puted using O(log R) arithmetic operations on
O(S)-bit words

Other assumptions and notation. To simplify
expressions we assume that M > n. Also, we will
assume that the processor can operate on log M-
bit words in unit cost. One can easily modify our
upper bounds for the case when either of these as-
sumptions is not true.

All O() constants in the paper are absolute, ex-
cept when it is clearly stated (in which case we use
0O¢() to denote dependence on t).

3 Approximation of [, difference for
data streams

Let S be the data stream sequence containing
pairs (4,a), for i € [n] and a € {-M ... M}. We
present the algorithm for calculating L; (S); the ex-
tension to p # 1 is discussed at the end.

We present our algorithm in three step. In the
first step we present an algorithm which approxi-
mates well L (S), but suffers from two major draw-

backs:
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1. It assumes infinite precision of the calculations
(i.e. uses arithmetic operations on real num-

bers)

2. Although it uses only O(1/¢?) words for stor-
age, it performs random (and multiple) access
to as many as ©(n) random numbers. Thus a
natural implementation of the algorithm would
require ©(n) storage.

Despite these limitations, the algorithm will serve
well as an illustration of our main ideas. In the next
two steps, we will remove its limitations.

An ideal algorithm. Let [ = ¢/e?log1/é for a
constant ¢ > 1 specified later. The algorithm works
as follows.

1. Initialize nl independent random variables
X!,i € [n],j € [I] with Cauchy distribution;
set S7 =0, for j € [{]

2. For each new pair (7, a): perform ¢ = Sj—i—an
for all j € [{]

3. Return median(|S°],...]S'71])

Let ¢; = Z(i,a)ES a; if there is no (i,a) € S, we
define ¢; = 0. Thus L1(S) = C = >, |e;|. The
following claim justifies the correctness of the algo-
rithm.

Claim 1 Each S? has the same distribution as CX
where X has Cauchy distribution.

Proof: Follows from the 1-stability of Cauchy
distribution. ad

Therefore, it 1s sufficient to estimate C' from in-
dependent samples of C X, i.e. from S°... 5. To
this end, we use the following Lemmas.

Lemma 1 If X has Cauchy distribution, then
median(|X|) = 1. Therefore, median(a|X|) = a,
for any a > 0.

Proof: If X has Cauchy distribution, then the
density function of | X|is f(x) = %H—% Therefore,
the distribution function of X is equal to

F(z)= /Oz flz)de = %arctan(z)

Since tan(w/4) = 1, we have F(1) = 1/2. Thus
median(X) = 1. O

Lemma 2 For any distribution D on & with the
distribution function F, take | = c¢/c*log1/d inde-
pendent samples Xo...X;_1 of D; also, let X =
median(Xg ... X;—1). Then for a suitable constant
¢ we have

PrlF(X)€[1/2—¢,1/24€]>1-94
Proof: Folklore. O

Lemma 3 Let F be the distribution function of | X|
where X has Cauchy distribution, and let z > 0 be
such that F(z) € [1/2 —¢€,1/2 4 €]. Then, if ¢ is
small enough, we have z € [1 — 4e, 1 + 4e].

Proof: Follows from the fact that F~(z) =
tan(xm/2) has bounded derivative around the point
1/2. In particular, (F~1)(1/2) = . O

Therefore, for a suitable constant ¢, we have the
following Theorem.

Theorem 1 The “ideal” algorithm correctly esti-
mates L1(S) up to the factor (1+¢€) with probability
at least 1 — 6.

Bounded precision. Now we show how to re-
move the assumption that the numbers on which
we perform operations have infinite precision. Since
the number is in the data stream are integers, we
only need to take care of the random variables X .
Specifically, we show that it is sufficient to assume
that they take values in the set Vi = {p/q : p,q €
{=L,L}, q # 0}, where L is small. '

Consider the following way of generating X7 . Let
YZ»j be a random number from the set [0,1). We de-
fine Xg = F_l(YZ»j) = tan(ﬂ'Yij/Q). Now we define
an approximation )N(f of Xf Let f/ij be equal to
YZ»j rounded to the nearest multiple of 1/L. We
define )N(f to be F_l(f/ij), again rounded to the
nearest multiple of 1/L. Consider the case when
Y/ <1 - K/L =1—a (K to be specified later).
Since the derivative of F~!(z) for # < 1 — o is
O(1/a?), it follows that in this case )N(f =X/ +E/,
where |E/| = O(z47) = O(K?/L) = 5.

Now we set K and L such that K/L <
1/(n/8)°1) and 8 << ¢, in which case we know
that )N(f = X/ 4 B for all 4,5 with high probability.
Then the value

F=3"3 a¥ =Xl =Y a(xitp) =58 ¢

i (i,a)€S g g

Since median(S7) = 3", |¢;|, by making 3 to be suf-
ficiently smaller than e, we can ignore the contribu-
tion of 33", ¢; to the estimated quantity.
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Randomness reduction. Consider a fixed S7.
From the above it follows that the value of S/ can
be represented using O(log M) bits; also, we need
only O(logn) bits to generate each )N(f Unfortu-
nately, we still need O(n) memory words to make
sure that if we access a specific )N(f several times, its
value is always the same. We avoid this problem in
the following way. Assume for a moment that the
pairs (i, a) are coming in the increasing order of i.
In this case we do not have to store X?, since we can
generate them on the fly. Thus, the algorithm uses
only O(log M) storage and O(n) chunks of random-
ness, and thus there exists a PRG G which given a
random seed of size O(log M log(n/J)) expands it to

a sequence 7‘6 X such that using 7‘3 instead

n—1
of )N(f results in negligible probability of error and
therefore the resulting value of $¢ (call it 57 ) can be
used to estimate L;(S). However, observe that for
a fixed random seed =, the value S7 does not depend
on the order in which the pairs (¢,a) come (since
addition is commutative). Therefore, GG is good as
well if the input is unsorted, i.e. the pairs come in
arbitrary order. Since we use [ random seeds for
each j € [l], we obtain the following result.

Theorem 2 There is an algorithm which estimates
L1(S) up to a factor (1 £ €) with probability 1 — §)
and uses

e O(log M log(1/8)/€%) bits of random access

storage

e O(log M log(n/é)log(1/8)/€*) random  bits
(which can be stored in a random access
storage)

e O(log(n/d)) arithmetic operations per pair

(i,a)

Computing L,(S5). For p = 2, the algorithm and
analysis remains essentially the same, with Cauchy
distribution replaced by Gaussian. For general p €
(0,2] the algorithm and analysis become more in-
volved, mainly due to the fact that no closed formu-
las are known for densities and/or distribution func-
tions of general p-stable distribution. However, it
is known [7] that one can generate p-stable random
variables essentially from two independent variables
distributed uniformly over [0, 1]; therefore, one can
implement our algorithm for general p. As far as the
analysis is concerned, it seems (we did not perform
a rigorous verification of this fact) that the distribu-
tion functions of p-stable are Lipschitz around the
median (i.e. an analog of Lemma 3 holds); also
their-medianscan-be-computed-numerically for any

p. Therefore, it seems likely that the algorithm is
provably correct also for general p. However, since
we are not aware of any application which involves
p different from 1 or 2, we skip further details.

4 Dimensionality reduction for [/,

In this section we show how to obtain the sketch
function C' which maps the points into a normed
space [7". We will describe the mapping in terms
of dimensionality reduction of {7; the adaptation to
the stream model can be done as in the previous
section. Specifically, we prove the following Theo-
rem.

Theorem 3 For any €, > 0, there is a probability
space D over linear mappings f : I — I¥, where k =
(In(1/8) /)P0 such that for any pair of points
p,q €17

o the probability that |f(p) — f(g)l < |p—ql1 s
smaller than &

o the probability that | f(p)—f(q)|1 > (1+€)lp—qh
15 smaller than 1 — ¢

Note that the embedding i1s randomized but
asymmetric: the probability of small expansion is
only ¢, while the probability of small contraction is
1-4.

Proof: We define the random mapping f
such that for j = 1...%k the jth coordinate of
J((v1,...,vn)) is equal to . XJv;, where X/ are
1.1.d random variables having Cauchy distribution.
Since f is linear, it sufficient to show the above
for ¢ = 0 and p such that |p|; = 1. In this case
[F(p) = F(@)] = 525152 Xfwil = 32; 5] Since
the Cauchy distribution is 1-stable, each Y; has a
Cauchy distribution. Thus it is sufficient to prove
the following fact: for any sequence Y7 ... Yy of i.i.d.
variables with Cauchy distribution, let ¥ =5 . [V [.
Show that there exists a threshold T = T(k,0d,¢),
such that:

o Pr[Y < (1 —¢)°T] <4, for some ¢ = O(1)

o Pr[Y > (1+¢)7] < L2

We will first establish 7" which is “good” for the
second condition. Let U = a -k, for some a > 1.
Since (what is easy to verify) Pr[|¥;| > t] < b/t
for some b = O(1), by the “union bound” we have

Pr[3;|Y:| > U] < kb/U = b/a. We define

T = B[y : V|vi| < U]
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By the linearity of expectation

T = Y E[Wi|: vl <U]

K2y mide
1—b/a

2 In(U?+1)

m 2(1—b/a)

IN

Set b/a = 42 Then

Pr[Y > (14 €)T]
Pr[Y > (1+ )T :V;|Yi| < U]

IN 4+ A

1
b -
/a—|—1+€

1+4¢/2
14¢

where the second last inequality is an application of
Markov inequality.

Now we need to show the first condition holds.
Define I; = [(1 + €)'~ (1 4+ ¢)'] for i > 1. Let
pi = Pr[Y1 € I;]. We can bound p; from below as
follows:

(1+¢)°
P = 2/ ;dl‘
(

T 1+E)z—11+l‘2

2 . . 1
> 1+ -1+ —
R R e

2 (1 +e)i—t
7l+4+(1+¢)%

Let n; be the number of ¥;’s falling to the interval
I;. In the following we introduce a parameter L > 1
such that for all ¢ <1 = log,,. L we have n; >

(1—€)p;k. Note that this implies the following lower
bound 7" for |Y|

Z(l + G)i_lni

l

Z(l +e) (1= e)pik

7 >

v

(146t (14t
L4+ (14 €)%

v
3
ol
—
|
NP
2

(1 4:6)2

2 1-c¢

> ;k’md(hl L)/e—(log . 1/€)/2)
2 1-c¢
;km(h@ — €(logy 4 1/€)/2)

We will see later that

(logyyc 1/€)/2 (1)

Therefore, the final lower bound for 7" is %(1 -
€)°kIn L.

We will make L as close to U as possible (so that
T’ is close to T). However, we have to make sure
that for all ¢ < [ we have n; > (1 — ¢)p;k with
probability 1 — 6. To this end, notice that if ¢ <[
then p; > ¢ = %m Therefore, by Chernoff
bound, we just need to make sure that

InL >

exp(—*/3 - qk) < 61
The latter condition can be rewritten as
k>3/e®-1/q-(In(1/8) + Inl)
Substituting for ¢ we get
k>3/ n/2-(1+L(146)[Inlng e L+ 1n1/6]
Again, we will see later that
Inlnj.. L < Inl/s (2)

Since also I > 1/e, we get that it is sufficient to
make sure that

k>3n/e3 - (14¢)*LInl/s

which can be satisfied by setting

63

L= go et/ 1/3) = Ck/In1/o)

Finally, in order to show that T > T(1 — ¢)f
for some f = O(1), it is sufficient to ensure that
InU < (14¢€)In L. Substituting for U and L we get
the constraint

In(ak) < In[Ck/In(1/6)](1+€)
which solves to

b [a(ln 1/6

> . )l-l-ﬁ]l/e.

Notice that if we take (without loss of generality)
1/6 = 1/ then both inequalities (1) and (2)
which we assumed on the way are satisfied. a
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5 Other results

In this section we sketch other results we ob-
tained using the techniques introduced earlier.

Explicit embedding of I} into l?o(log " with (1+
1/n°M) distortion. We start from illustrating the
embedding by providing an intuitive (although not
exactly formal) embedding of [¢ into [; with infinite
dimension. To this end, notice that if X;...X, is
a sequence of 1.1.d. random variables with Gaussian
distribution, then there exists a constant ¢ > 0 such
that for any p = (uy, ..., u,) €5 we have

B[ wiX:l] = clpls

(this easily follows from 2-stability of Gaussian dis-
tribution and properties of a norm). Thus if we
create an “infinite matrix” A with n columns and
“infinite” number of rows, one for “each” configu-
ration of (X1,..., X,,), then |Ap|; is “proportional”
to |p|2, which is what we need.

To reduce the dimension of the host space, we
proceed essentially as in Section 3. The only dif-
ference is that this time we are dealing with the
expectation instead of low probability of error (i.e.
we have to exclude the case that a small probability
event has a significant contribution to the expecta-
tion). To this end, we proceed as follows. Let X!
be 1.i.d. variables having the “truncated Gaussian”
distribution, i.e. such that:

o if |Xz| S t, then Xz/ = Xz'
o if | X;| > ¢, then X/ =

We use t = 2¢y/Togn, so Pr[|X;| > 1] < a/n¢,
for some a > 0. We will relate E[)", X;u;] and
E[Y", X[u;] as follows. Let p = Pr[3i : | X;| > t];
notice that p < a/n°"! i.e. is small. Then we can

write
E = ED_ Xu]
= (1 —p)E[|ZXiui| Vi X < 1]
+ B[ Xiwg| 1 3] X > 1]
= (1—PZ)E1+PE2
and
D

(1= p) B[ Xfui| : ViX] # (]
+ B[ X[ui| :3iX] = 0]
= (1-p)EL+pL,

Notice that Fy = Ej]. Moreover, it is easy to
see that Fy = O(nt) and E), = O(nt). Thus E
and E’ differ only by a factor of (14 1/n®(1)). The
bounded precision issues are essentially the same as
in Section 3, so we skip the details.

Embedding of [} into l?e(n) with O.(nlog” n)
non-uniform bits and (1 + ¢) distortion. We
follow the usual scheme for non-constructive embed-
dings [11], i.e.

1. Generate a random N X n matrix, where N =
Oc(n) (in our case all entries of A arei.i.d. vari-
ables with Gaussian distribution)

2. Show that for any vector u such that |u|s =
1 the value of |Aul; is sharply concentrated
around some C' = C'(n), i.e. is within the range

[C, (14 €)C] with probability 1 — 27%(?)

3. Apply this bound to an epsilon-net of a unit
ball in [§ and conclude that all vectors are dis-
torted by at most (1 + €) factor

However, we are not aware of any proof of the
Step 2 for our distribution of A. In particular:

e the matrix in [11] assumes dependence between
the columns

e the proof for the {—1,1} matrix in [25] does
not give arbitrarily small distortion (1 + €)

Therefore, we prove the following
Lemma 4 There exists a constant A > 0 such that
1. B(L)=k\/2/7
2. For 0 < ¢ <1 we have
Pr[L > (1+¢)B[L]] < exp(—ke*A)
and

Pr[L < (1 — €)E[L]] < exp(—ke?A)

Note that, modulo the constant A (which has
not been optimized here) the dependence of the tail
bound on £ and ¢ is the same as in the previous
section.
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Proof: Firstly, recall that all X;’s are distributed
according to N(0,1). Let X be a random variable
with N(0, 1) distribution. Clearly

ElIX]]

1/\/%/_Oo xexp(—z?/2)dx

= 1/V2r-2
= 2/m

By linearity of expectation, we get E[L] =

kv/2/7.

The sharp concentration of L around its mean is,
unfortunately, somewhat more complicated than in
the [5 case, mainly due to the fact that the distri-
bution of L does not seem to have a closed form.
Therefore, we use exponential moment inequalities
to upper bound the tail of L’s distribution.

Let 3 =1+ ¢. Then for any a > 0

Pr[Y X > BELY X
Prlexp(a Z | X;]) > exp(aﬁE[Z 1 ()]

Elexp(a ) |Xi])]
exp(af B[ [Xq])

Elexp(aX)]

- (exp(aﬁﬁ/_ﬂ))

= (N/D)*

IN

IN

By using Taylor expansion we know that D >
14 aB+/2/m. Tt is sufficient to upper bound N =

\/2/71']”0Oo exp(az) exp(—x?/2)dz. To this end, we
split N into the sum of Ny and Ns, where for a
z > 0 defined later we have

Ny =

\/2/71'/Oo exp(ax) exp(—2?/2)dx

= \/2/—71-/000 exp(azx + az) exp(—(z + 2)?/2)d

< 2/mexp(az — 2/2)
~/0 exp(ax) exp(—z?/2)dz
< explaz — z%/2)N

Since exp(az — 2%/2) is small for large z, we
can focus only on the initial part of the integral
N, namely Ny = \/2/71'[02 exp(ar)exp(—z?/2)dz.
In particular, let z = % Then for all x < 2z
we have |ax| < 1/2. Therefore, we know that
exp(az) < 1+ azx + (ax)?. Hence we can write

N, < 2/71'[/0z exp(—x?/2)dx

ax exp(—z*/2)dzx
(az)? exp(—x?/2)]d

< 2/m(\/7)2+a+a*- )
1 +/2/ma+\/2/7I - a*

where I = foz z? exp(—2?/2)dr is upper bounded
by a constant. Thus we can bound

< 1+/2/ma+ \/2/xI -
N 1+ apy/2/w
1+\/2/ma+ \/2/xI - a®
L+ \/2/ma+\/2/mea
_ \/rale—Ia)
L+ \/2/ma +\/2/mea

If we set a = 57 then

:

Ny/D

V2/ma(e/2)
1+ +/2/7a 4+ \/2/7ca
Recall that N = N1+Ny = exp(az—2z?/2) N+ Na,

and thus N = N3/(1 — exp(az — 2%/2)). Also z =
L = I/e and therefore

Ny/D<1—

AT
iD= (1 L+ /2/mgr +\/2/mes;
J(1-expli/z- o)
< (1=C1eéh)/(1 —exp(1/2 — Ca/e?))
< (1-Cs)
x Therefore

Pr> X > BED | IX[] < (1= Cse™)F

which was to be shown.

The second inequality can be proved in exactly
the same way as shown above, with the difference
that a < 0 and g =1 —e. a

Once we have the sharp concentration lemma, we
can show that each row of A can be in fact generated
using small random seed (as in Section 3). Thus, we
need only O(n log? n) bits to represent A.
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