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Stable Distributions, Pseudorandom Generators, Embeddings andData Stream ComputationPiotr Indyk �AbstractIn this paper we show several results obtained bycombining the use of stable distributions with pseu-dorandom generators for bounded space. In partic-ular:� we show how to maintain (using onlyO(logn=�2) words of storage) a sketchC(p) of a point p 2 ln1 under dynamic updatesof its coordinates, such that given sketchesC(p) and C(q) one can estimate jp� qj1 up toa factor of (1 + �) with large probability. Thissolves the main open problem of [10].� we obtain another sketch function C 0 whichmaps ln1 into a normed space lm1 (as opposedto C), such that m = m(n) is much smallerthan n; to our knowledge this is the �rst di-mensionality reduction lemma for l1 norm� we give an explicit embedding of ln2 into lnO(logn)1with distortion (1 + 1=n�(1)) and a non-constructive embedding of ln2 into lO(n)1 with dis-tortion (1 + �) such that the embedding can berepresented using only O(n log2 n) bits (as op-posed to at least n2 used by earlier methods)1 IntroductionStable distributions [26] are de�ned as limitsof normalized sums of independent identically dis-tributed variables (see also Preliminaries for an al-ternative de�nition). The most well-known exam-ple of a stable distribution is Gaussian (or normal)distribution. However, the class is much wider; forexample, it includes heavy-tailed distributions. Sta-ble distribution have found numerous applications�Stanford University. E-mail: indyk@cs.stanford.eduPart of this work was done while the author was visitingAT&T Shannon Labs.

in various �elds (see the survey [24] for more de-tails).In this paper we show that the combination ofstable distributions and bounded space pseudoran-dom generators [23] forms a powerful tool for prov-ing a variety of embedding-like results. The basicidea behind this combination is as follows. It isknown [11, 25, 20] that an inner product of a vectoru 2 ldp with a sequence of n i.i.d. random vari-ables having stable distribution (with parameter p,see Preliminaries) is a good estimator of lp normof u; in particular, one can use several such prod-ucts to embed lp into some other space. Since innerproduct can be computed in a small space, we canuse pseudorandom generators to reduce the num-ber of required random bits. This in turn translatesinto reduction of storage/dimensionality/number ofnon-uniformbits or other parameters of interest, de-pending on the application.In the following we describe in more detail ap-plications of this technique to computing with datastreams, dimensionality reduction in l1 and embed-dings of l2 into l1; we also describe the relevant al-gorithmic implications.Stream computation. The �rst problem we ad-dress is de�ned as follows [10] (see also [14] for abackground on stream computation). Assume thatwe have an access to a stream S of data, whereeach chunk of data is of the form (i; a), wherei 2 [n] = f0 : : :n � 1g and a 2 f�M : : :Mg. Wewant to approximate (up to the multiplicative fac-tor (1� �)) the quantity L1(S), whereLp(S) = (Xi2[n] j X(i;a)2S ajp)1=p:The problem has a variety applications to estimat-ing the size of self-join [1, 13] and potential ap-plications to estimation of statistics of Net-Flowdata [10]. An obvious solution to this problem isto maintain a counter ci for each i and computethe sum of jcij's at the end. Unfortunately, thissolution requires �(n) words of storage. In their1
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in
uential paper, Alon, Matias and Szegedy [1] pro-posed a very nice and simple scheme for approximat-ing L2(S)1 in space O(1=�2) with (arbitrarily large)constant probability. Feigenbaum, Kannan, Straussand Viswanathan [10] proposed an algorithm (usingsimilar amount of memory) for L1(S) for the casewhere (roughly) for each i the stream S contains atmost two pairs (i; a). An alternative way to viewtheir result is to assume two streams, one (Sr) con-taining red pairs and another one (Sb) containingblue pairs; for each i there is at most one pair (i; a)of each color. The goal is to compute sketches C(Sr)and C(Sb) of small size, such that the approximatevalue L1(Sr ; Sb) = Pi jP(i;a)2Sr a � P(i;a)2Sb ajcan be quickly evaluated from C(Sr) and C(Sb) byapplying some function F (see [10] for more de-tails of the model). Computing sketches of normedvectors enables to compress the data and speed-up computation, e.g., see [18] where this was ap-proach was shown to give up to an order of magni-tude speed-up for various data-mining problems; seealso [4, 3, 6] (where a somewhat di�erent similaritymeasure has been used).In this paper we propose a uni�ed frameworkfor approximating Lp(S) for p 2 f1; 2g2, usingO(logn=�2) memory words. Our algorithm does nothave the aforementioned restrictions of [10]; thus,it solves the main open problem from that paper(see [10], comments after Corollary 16). Moreover,our algorithm maintains only linear combinationsof the input values, and therefore extends also tothe sketch model (again, without the restrictionsof [10]). Since the algorithm is simple and free oflarge constants, it can be used to extend the meth-ods of [18] to l1 norm and it is also likely to �ndpractical uses for the compression applications men-tioned in [10].Dimensionality reduction. The above stream al-gorithms, especially those operating in the sketchmodel, can be viewed as dimensionality reductiontechniques. Indeed, the streams Sb and Sr canbe viewed as points in n-dimensional space andLp(Sr ; Sb) is just a norm (for p � 1). Thus thesketch operator C can be viewed as an approximateembedding of lnp into the sketch space (say C), suchthat� each point from C can be described using onlysmall number (say m) of numbers (so we canassume C � <m).1In their original paper they assumed all pairs are of theform (i;+1), but it was shown in [10] that their algorithmactually works for the general case.2We also discuss the extension to any p 2 (0;2].

� the value of Lp(Sr ; Sb) is approximately equalto F (C(Sr); C(Sb))However, all of the above algorithms have the unfor-tunate property that the pair (C; F ) is not a normedspace. Speci�cally, the de�nition of F involves themedian operator3; e.g. for L1F ((x1; : : : ; xm); (y1; : : : ; ym)) = median(jx1�y1j; : : : ; jxm�ymj)Since F is not a norm, none of the large numberof algorithms designed for normed spaces can beused. Thus, if one would like to perform any non-trivial operation on the set of points in the sketchspace (e.g. clustering, similarity search, regressionetc), not being able to apply algorithms designedfor normed spaces is a serious disadvantage.In this paper we attempt to overcome this dif-�culty. For L2, one can observe that we can re-place median by sum in our algorithm without sig-ni�cantly increasing the probability of error (thisfollows from the proof of Johnson-Lindenstraussdimensionality reduction lemma as in [16]). ForL1, the situation is more complicated, since forsketch points (x1; : : : ; xm); (y1; : : : ; ym) the expec-tation E[jxi � yij] is unde�ned (i.e. is equal to1). However, we were able to show that thereexists a sketch function C which maps the pointsinto m = (ln(1=�)=�)O(1=�)-dimensional space withl1 norm, such that for any pair of points p; q:� jC(p)�C(q)j1 � (1��)jp�qj1 with probabilityat least 1� � (i.e. C is almost non-contractivewith high probability)� jC(p)� C(q)j1 � (1 + �)jp� qj1 with probabil-ity at least 1 � 1=(1 + �) (i.e. is almost non-expansive with a constant probability)Note, that this can be viewed as a one-sided ana-log of Johnson-Lindenstrauss dimensionality reduc-tion for l1 ( to our knowledge this is the �rst di-mensionality reduction theorem for l1). Althoughwe cannot ensure that the mapping does not ex-pand a �xed pair of points with high probability,the one-sided guarantee is good enough for severalpurposes. In particular, consider searching for thenearest neighbor (say of point q): if the distancefrom q to its nearest neighbor p does not expandmuch, and the distance to any other point p0 doesnot contract much, we are still guaranteed to return3For L2 the algorithms in [1, 10] can be implementedwithmedian replaced by a sum; unfortunately, in that case thesketch size depends polynomially, not logarithmically on theprobability of error. This makes the modi�ed algorithm un-suitable for the applications mentioned below.2
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an approximate nearest neighbor of q (note that wecan ensure this happens with constant probability,which can be ampli�ed by using multiple data struc-tures). By reductions in [8, 9, 16, 17, 5, 12] solvingapproximate nearest neighbor gives us e�cient algo-rithms for hierarchical clustering, Minimum Span-ning Tree clustering, diameter and other forms ofclustering. Thus our dimensionality reduction tech-nique is su�cient for a large class of algorithmicproblems.Deterministic embeddings of l2 into l1. It isknown (e.g. see [11] and references therein) that ln2can be embedded into lO(n)1 with distortion (1 + �)(the O() constant depends on the �). Unfortunately,none of those proofs is constructive. To our knowl-edge, the only constructive result of this type [2, 21]embeds ln2 into lO(n2)1 with p3 distortion. In thispaper we provide:� an explicit embedding of ln2 into lnO(logn)1 withdistortion (1 + 1=n�(1))� a non-constructive embedding of ln2 into lO(n)1with distortion (1 + �) such that the embed-ding can be represented using only O(n log2 n)bits (as opposed to at least n2 used by earliermethods); this reduces the non-uniformity andspace requirements of the embeddingBy combining the �rst result with the resultof [15] we obtain a (3 + �)-approximate deter-ministic algorithm for the nearest neighbor searchin ln2 with polynomial preprocessing/storage and~O(nlogn) query time. Note that for not-so-large di-mension n (e.g. polylogarithmic in the data set size)this gives a sublinear query time.2 PreliminariesStable distributions. A distribution D over <is called p-stable, if there exists p � 0 such thatfor any n real numbers a1 : : : an and i.i.d. variablesX1 : : :Xn variables with distribution D, the randomvariable Pi aiXi has the same distribution as thevariable (Pi jaijp)1=pX, where X is a random vari-able with distribution D.It is known [26] that stable distributions exist forany p 2 (0; 2]. In particular:� a Cauchy distribution DC , de�ned by the den-sity function c(x) = 1� 11+x2 , is 1-stable� a Gaussian (normal) distribution DG, de�nedby the density function g(x) = 1p2� e�x2=2, is2-stable

Pseudorandom generators (PRGs). As in [23]we consider PRGs which fool any Finite State Ma-chine (FSM) which uses at most O(S) bits of space(or 2O(S) states). Assume that a FSM Q 2 space(S)uses at most k chunks of random bits, where eachchunk is of length b. The generator G : f0; 1gm !(f0; 1gb)k expands a \small number" m of \trulyrandom" bits into kb bits which \look random" forQ. Formally, it is de�ned as follows. Let Dt be auniform distribution over f0; 1gt. For any (discrete)random variable X let D[X] be the distribution ofX, interpreted as a vector of probabilities. Let Q(x)denote the state of Q after using the random bitssequence x. Then we say that G is a PRG with pa-rameter � > 0 for a class C of FSMs, if for everyQ 2 CjD[Qx2Dbk(x)]�D[Qx2Dm(G(x))]j1 � �where jyj1 denotes an l1 norm of a vector y.Fact 1 ([23]) There exists a PRG G for space(S)with parameter � = 2�O(S) such that:� G expands O(S logR) bits into O(R) bits� G requires only O(S) bits of storage (in addi-tion to its random input)� any length-O(S) chunk of G(x) can be com-puted using O(logR) arithmetic operations onO(S)-bit wordsOther assumptions and notation. To simplifyexpressions we assume that M � n. Also, we willassume that the processor can operate on logM -bit words in unit cost. One can easily modify ourupper bounds for the case when either of these as-sumptions is not true.All O() constants in the paper are absolute, ex-cept when it is clearly stated (in which case we useOt() to denote dependence on t).3 Approximation of lp di�erence fordata streamsLet S be the data stream sequence containingpairs (i; a), for i 2 [n] and a 2 f�M : : :Mg. Wepresent the algorithm for calculating L1(S); the ex-tension to p 6= 1 is discussed at the end.We present our algorithm in three step. In the�rst step we present an algorithm which approxi-mates well L1(S), but su�ers from two major draw-backs:3
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1. It assumes in�nite precision of the calculations(i.e. uses arithmetic operations on real num-bers)2. Although it uses only O(1=�2) words for stor-age, it performs random (and multiple) accessto as many as �(n) random numbers. Thus anatural implementation of the algorithm wouldrequire �(n) storage.Despite these limitations, the algorithmwill servewell as an illustration of our main ideas. In the nexttwo steps, we will remove its limitations.An ideal algorithm. Let l = c=�2 log 1=� for aconstant c > 1 speci�ed later. The algorithm worksas follows.1. Initialize nl independent random variablesXji ; i 2 [n]; j 2 [l] with Cauchy distribution;set Sj = 0, for j 2 [l]2. For each new pair (i; a): perform Sj = Sj+aXjifor all j 2 [l]3. Return median(jS0j; : : : jSl�1j)Let ci = P(i;a)2S a; if there is no (i; a) 2 S, wede�ne ci = 0. Thus L1(S) = C = Pi jcij. Thefollowing claim justi�es the correctness of the algo-rithm.Claim 1 Each Sj has the same distribution as CXwhere X has Cauchy distribution.Proof: Follows from the 1-stability of Cauchydistribution. 2Therefore, it is su�cient to estimate C from in-dependent samples of CX, i.e. from S0 : : :Sl�1. Tothis end, we use the following Lemmas.Lemma 1 If X has Cauchy distribution, thenmedian(jXj) = 1. Therefore, median(ajXj) = a,for any a > 0.Proof: If X has Cauchy distribution, then thedensity function of jXj is f(x) = 2� 11+x2 . Therefore,the distribution function of X is equal toF (z) = Z z0 f(x)dx = 2� arctan(z)Since tan(�=4) = 1, we have F (1) = 1=2. Thusmedian(X) = 1. 2

Lemma 2 For any distribution D on < with thedistribution function F , take l = c=�2 log 1=� inde-pendent samples X0 : : :Xl�1 of D; also, let X =median(X0 : : :Xl�1). Then for a suitable constantc we havePr[F (X) 2 [1=2� �; 1=2 + �]] > 1� �Proof: Folklore. 2Lemma 3 Let F be the distribution function of jXjwhere X has Cauchy distribution, and let z > 0 besuch that F (z) 2 [1=2 � �; 1=2 + �]. Then, if � issmall enough, we have z 2 [1� 4�; 1 + 4�].Proof: Follows from the fact that F�1(x) =tan(x�=2) has bounded derivative around the point1=2. In particular, (F�1)0(1=2) = �. 2Therefore, for a suitable constant c, we have thefollowing Theorem.Theorem 1 The \ideal" algorithm correctly esti-mates L1(S) up to the factor (1��) with probabilityat least 1� �.Bounded precision. Now we show how to re-move the assumption that the numbers on whichwe perform operations have in�nite precision. Sincethe number is in the data stream are integers, weonly need to take care of the random variables Xji .Speci�cally, we show that it is su�cient to assumethat they take values in the set VL = fp=q : p; q 2f�L;Lg; q 6= 0g, where L is small.Consider the followingway of generatingXji . LetY ji be a random number from the set [0; 1). We de-�ne Xji = F�1(Y ji ) = tan(�Y ji =2). Now we de�nean approximation ~Xji of Xji . Let ~Y ji be equal toY ji rounded to the nearest multiple of 1=L. Wede�ne ~Xji to be F�1( ~Y ji ), again rounded to thenearest multiple of 1=L. Consider the case when~Y ji < 1 � K=L = 1 � � (K to be speci�ed later).Since the derivative of F�1(x) for x < 1 � � isO(1=�2), it follows that in this case ~Xji = Xji +Eji ,where jEji j = O( 1�2L) = O(K2=L) = �.Now we set K and L such that K=L <1=(n=�)�(1) and � << �, in which case we knowthat ~Xji = Xji � � for all i; j with high probability.Then the value~Sj =Xi X(i;a)2S a ~Xj =Xi ci ~Xji =Xi ci(Xji ��) = Sj��Xi ciSince median(Sj) =Pi jcij, by making � to be suf-�ciently smaller than �, we can ignore the contribu-tion of �Pi ci to the estimated quantity.4
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Randomness reduction. Consider a �xed Sj .From the above it follows that the value of Sj canbe represented using O(logM ) bits; also, we needonly O(logn) bits to generate each ~Xji . Unfortu-nately, we still need O(n) memory words to makesure that if we access a speci�c ~Xji several times, itsvalue is always the same. We avoid this problem inthe following way. Assume for a moment that thepairs (i; a) are coming in the increasing order of i.In this case we do not have to store Xij , since we cangenerate them on the 
y. Thus, the algorithm usesonly O(logM ) storage and O(n) chunks of random-ness, and thus there exists a PRG G which given arandom seed of size O(logM log(n=�)) expands it toa sequence Xj0 : : :Xjn�1, such that using Xji insteadof ~Xji results in negligible probability of error andtherefore the resulting value of ~Sji (call it Sji ) can beused to estimate L1(S). However, observe that fora �xed random seed r, the value Sj does not dependon the order in which the pairs (i; a) come (sinceaddition is commutative). Therefore, G is good aswell if the input is unsorted, i.e. the pairs come inarbitrary order. Since we use l random seeds foreach j 2 [l], we obtain the following result.Theorem 2 There is an algorithm which estimatesL1(S) up to a factor (1 � �) with probability 1 � �)and uses� O(logM log(1=�)=�2) bits of random accessstorage� O(logM log(n=�) log(1=�)=�2) random bits(which can be stored in a random accessstorage)� O(log(n=�)) arithmetic operations per pair(i; a)Computing Lp(S). For p = 2, the algorithm andanalysis remains essentially the same, with Cauchydistribution replaced by Gaussian. For general p 2(0; 2] the algorithm and analysis become more in-volved, mainly due to the fact that no closed formu-las are known for densities and/or distribution func-tions of general p-stable distribution. However, itis known [7] that one can generate p-stable randomvariables essentially from two independent variablesdistributed uniformly over [0; 1]; therefore, one canimplement our algorithm for general p. As far as theanalysis is concerned, it seems (we did not performa rigorous veri�cation of this fact) that the distribu-tion functions of p-stable are Lipschitz around themedian (i.e. an analog of Lemma 3 holds); alsotheir median can be computed numerically for any

p. Therefore, it seems likely that the algorithm isprovably correct also for general p. However, sincewe are not aware of any application which involvesp di�erent from 1 or 2, we skip further details.4 Dimensionality reduction for l1In this section we show how to obtain the sketchfunction C which maps the points into a normedspace lm1 . We will describe the mapping in termsof dimensionality reduction of ln1 ; the adaptation tothe stream model can be done as in the previoussection. Speci�cally, we prove the following Theo-rem.Theorem 3 For any �; � > 0, there is a probabilityspace D over linear mappings f : ln1 ! lk1 , where k =(ln(1=�)=�)O(1=�), such that for any pair of pointsp; q 2 ln1 :� the probability that jf(p) � f(q)j1 � jp� qj1 issmaller than �� the probability that jf(p)�f(q)j1 � (1+�)jp�qj1is smaller than 1� �Note that the embedding is randomized butasymmetric: the probability of small expansion isonly �, while the probability of small contraction is1� �.Proof: We de�ne the random mapping fsuch that for j = 1 : : :k the jth coordinate off((v1; : : : ; vn)) is equal to PiXji vi, where Xji arei.i.d random variables having Cauchy distribution.Since f is linear, it su�cient to show the abovefor q = 0 and p such that jpj1 = 1. In this casejf(p) � f(q)j = Pj jPiXji vij = Pj jYjj. Sincethe Cauchy distribution is 1-stable, each Yj has aCauchy distribution. Thus it is su�cient to provethe following fact: for any sequence Y1 : : : Yk of i.i.d.variables with Cauchy distribution, let Y =Pj jYij.Show that there exists a threshold T = T (k; �; �),such that:� Pr[Y < (1� �)cT ] � �, for some c = O(1)� Pr[Y > (1 + �)T ] � 1+�=21+�We will �rst establish T which is \good" for thesecond condition. Let U = a � k, for some a � 1.Since (what is easy to verify) Pr[jYij > t] � b=tfor some b = O(1), by the \union bound" we havePr[9ijYij � U ] � kb=U = b=a. We de�neT = E[Y : 8ijYij � U ]5
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By the linearity of expectationT = Xi E[jYij : jYij � U ]� k 2� R U0 x1+x2 dx1� b=a� 2�k ln(U2 + 1)2(1� b=a)Set b=a = �=21+� . ThenPr[Y � (1 + �)T ]� Pr[9ijYij > U ]+ Pr[Y � (1 + �)T : 8ijYij � U ]� b=a+ 11 + �= 1 + �=21 + �where the second last inequality is an application ofMarkov inequality.Now we need to show the �rst condition holds.De�ne Ii = [(1 + �)i�1; (1 + �)i] for i � 1. Letpi = Pr[Y1 2 Ii]. We can bound pi from below asfollows:pi = 2� Z (1+�)i(1+�)i�1 11 + x2dx� 2� [(1 + �)i � (1 + �)i�1] � 11 + (1 + �)2i= 2� �(1 + �)i�11 + (1 + �)2iLet ni be the number of Yi's falling to the intervalIi. In the following we introduce a parameter L � 1such that for all i � l = log1+� L we have ni �(1��)pik. Note that this implies the following lowerbound T 0 for jY jT 0 � lXi=1(1 + �)i�1ni� lXi=1(1 + �)i�1(1� �)pik� 2�k(1� �)� lXi=1 (1 + �)i�1 � (1 + �)i�11 + (1 + �)2i= 2�k 1� �(1 + �)2 � lXi=1 (1 + �)2i1 + (1 + �)2i� 2�k 1� �(1 + �)2 �(l � (log1+� 1=�)=2) 11 + �

� 2�k 1� �(1 + �)3 �((lnL)=�� (log1+� 1=�)=2)� 2�k 1� �(1 + �)3 (lnL� �(log1+� 1=�)=2)We will see later thatlnL � (log1+� 1=�)=2 (1)Therefore, the �nal lower bound for T 0 is 2� (1 ��)5k lnL.We will make L as close to U as possible (so thatT 0 is close to T ). However, we have to make surethat for all i � l we have ni � (1 � �)pik withprobability 1 � �. To this end, notice that if i � lthen pi � q = 2� �1+L(1+�) . Therefore, by Cherno�bound, we just need to make sure thatexp(��2=3 � qk) � �=lThe latter condition can be rewritten ask � 3=�3 � 1=q � (ln(1=�) + ln l)Substituting for q we getk � 3=�3 � �=2 � (1 + L(1 + �))[ln ln1+� L+ ln1=�]Again, we will see later thatln ln1+� L � ln 1=� (2)Since also L > 1=�, we get that it is su�cient tomake sure thatk � 3�=�3 � (1 + �)2L ln 1=�which can be satis�ed by settingL = �33�(1 + �)2k= ln(1=�) = Ck= ln(1=�)Finally, in order to show that T 0 � T (1 � �)ffor some f = O(1), it is su�cient to ensure thatlnU � (1+ �) lnL. Substituting for U and L we getthe constraintln(ak) � ln[Ck= ln(1=�)](1 + �)which solves tok � [a( ln 1=�C )1+�]1=�:Notice that if we take (without loss of generality)1=� = 1=�
(1), then both inequalities (1) and (2)which we assumed on the way are satis�ed. 26
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5 Other resultsIn this section we sketch other results we ob-tained using the techniques introduced earlier.Explicit embedding of ln2 into lnO(logn)1 with (1+1=nO(1)) distortion. We start from illustrating theembedding by providing an intuitive (although notexactly formal) embedding of ld2 into l1 with in�nitedimension. To this end, notice that if X1 : : :Xn isa sequence of i.i.d. random variables with Gaussiandistribution, then there exists a constant c > 0 suchthat for any p = (u1; : : : ; un) 2 ln2 we haveE[jXi uiXij] = cjpj2(this easily follows from 2-stability of Gaussian dis-tribution and properties of a norm). Thus if wecreate an \in�nite matrix" A with n columns and\in�nite" number of rows, one for \each" con�gu-ration of (X1; : : : ; Xn), then jApj1 is \proportional"to jpj2, which is what we need.To reduce the dimension of the host space, weproceed essentially as in Section 3. The only dif-ference is that this time we are dealing with theexpectation instead of low probability of error (i.e.we have to exclude the case that a small probabilityevent has a signi�cant contribution to the expecta-tion). To this end, we proceed as follows. Let X 0ibe i.i.d. variables having the \truncated Gaussian"distribution, i.e. such that:� if jXij � t, then X 0i = Xi� if jXij > t, then X 0i = 0We use t = 2cplogn, so Pr[jXij > t] � a=nc,for some a > 0. We will relate E[PiXiui] andE[PiX 0iui] as follows. Let p = Pr[9i : jXij > t];notice that p � a=nc�1, i.e. is small. Then we canwriteE = E[Xi Xiui]= (1� p)E[jXi Xiuij : 8ijXij � t]+ pE[jXi Xiuij : 9ijXij > t]= (1� p)E1 + pE2and E0 = E[Xi Xiui]

= (1� p)E[jXi X 0iuij : 8iX 0i 6= 0]+ pE[jXi X 0iuij : 9iX 0i = 0]= (1� p)E01 + pE02Notice that E1 = E01. Moreover, it is easy tosee that E2 = O(nt) and E02 = O(nt). Thus Eand E0 di�er only by a factor of (1+ 1=n�(1)). Thebounded precision issues are essentially the same asin Section 3, so we skip the details.Embedding of ln2 into lO�(n)2 with O�(n log2 n)non-uniform bits and (1 + �) distortion. Wefollow the usual scheme for non-constructive embed-dings [11], i.e.1. Generate a random N � n matrix, where N =O�(n) (in our case all entries of A are i.i.d. vari-ables with Gaussian distribution)2. Show that for any vector u such that juj2 =1 the value of jAuj1 is sharply concentratedaround some C = C(n), i.e. is within the range[C; (1+ �)C] with probability 1� 2�
�(n)3. Apply this bound to an epsilon-net of a unitball in ln2 and conclude that all vectors are dis-torted by at most (1 + �) factorHowever, we are not aware of any proof of theStep 2 for our distribution of A. In particular:� the matrix in [11] assumes dependence betweenthe columns� the proof for the f�1; 1g matrix in [25] doesnot give arbitrarily small distortion (1 + �)Therefore, we prove the followingLemma 4 There exists a constant A > 0 such that1. E(L) = kp2=�2. For 0 < � < 1 we havePr[L � (1 + �)E[L]] � exp(�k�2A)and Pr[L � (1� �)E[L]] � exp(�k�2A)Note that, modulo the constant A (which hasnot been optimized here) the dependence of the tailbound on k and � is the same as in the previoussection.7
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Proof: Firstly, recall that allXi's are distributedaccording to N (0; 1). Let X be a random variablewith N (0; 1) distribution. ClearlyE[jXj] = 1=p2� Z 1�1 x exp(�x2=2)dx= 1=p2� � 2= p2=�By linearity of expectation, we get E[L] =kp2=�.The sharp concentration of L around its mean is,unfortunately, somewhat more complicated than inthe l2 case, mainly due to the fact that the distri-bution of L does not seem to have a closed form.Therefore, we use exponential moment inequalitiesto upper bound the tail of L's distribution.Let � = 1 + �. Then for any a > 0Pr[X jXij � �E[X jXij]]� Pr[exp(aX jXij) � exp(a�E[X jXij])]� E[exp(aP jXij)]exp(a�E[P jXij])=  E[exp(aX)]exp(a�p2=�)!k= (N=D)kBy using Taylor expansion we know that D �1 + a�p2=�. It is su�cient to upper bound N =p2=� R10 exp(ax) exp(�x2=2)dx. To this end, wesplit N into the sum of N1 and N2, where for az > 0 de�ned later we haveN1 = p2=� Z 1z exp(ax) exp(�x2=2)dx= p2=� Z 10 exp(ax+ az) exp(�(x + z)2=2)dx� p2=� exp(az � z2=2)� Z 10 exp(ax) exp(�x2=2)dx� exp(az � z2=2)NSince exp(az � z2=2) is small for large z, wecan focus only on the initial part of the integralN , namely N2 = p2=� R z0 exp(ax) exp(�x2=2)dx.In particular, let z = 12a . Then for all x � zwe have jaxj � 1=2. Therefore, we know thatexp(ax) � 1 + ax+ (ax)2. Hence we can writeN2 � p2=�[Z z0 exp(�x2=2)dx

+ Z z0 ax exp(�x2=2)dx+ Z z0 (ax)2 exp(�x2=2)]dx� p2=�(p�=2 + a+ a2 � I)= 1 +p2=�a+p2=�I � a2where I = R z0 x2 exp(�x2=2)dx is upper boundedby a constant. Thus we can boundN2=D � 1 +p2=�a+p2=�I � a21 + a�p2=�= 1 +p2=�a+p2=�I � a21 +p2=�a+p2=��a= 1� p2=�a(�� Ia)1 +p2=�a +p2=��aIf we set a = �2I thenN2=D � 1� p2=�a(�=2)1 +p2=�a +p2=��aRecall that N = N1+N2 = exp(az�z2=2)N+N2,and thus N = N2=(1 � exp(az � z2=2)). Also z =12a = I=� and thereforeN=D �  1� p2=� �2I (�=2)1 +p2=� �2I +p2=�� �2I !=�1� exp(1=2� I22�2 )�� (1� C1�2)=(1� exp(1=2� C2=�2))� (1� C3�2)ThereforePr[X jXij � �E[X jXij]] � (1� C3�2)kwhich was to be shown.The second inequality can be proved in exactlythe same way as shown above, with the di�erencethat a < 0 and � = 1� �. 2Once we have the sharp concentration lemma, wecan show that each row ofA can be in fact generatedusing small random seed (as in Section 3). Thus, weneed only O�(n log2 n) bits to represent A.Acknowledgements. The author would liketo thank Martin Strauss and Joan Feigenbaum forhelpful discussions.8
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